Thermal & Magneto-Rotational Instability in the Interstellar Medium

Robert A. Piontek & Eve C. Ostriker

What is the ISM?

- Chemical Composition
 - 75% Hydrogen
 - **25% Helium**
 - Dust, Molecules
- **Temperatures**
 - Giant molecular clouds (GMC) as low as 10K
 - Hot medium as high as 10^7 K, heat by SN shocks
- **Density**
 - Typically 1 particle cm⁻³ but up to 1000 cm⁻³ in GMCs

Classical Theory of ISM

- Cooling processes
 - Emission -> atomic and molecular transitions
- Heating processes
 - UV light and photo-electric effect on dust grains
- ISM exists in thermal equilibrium
 - Short time scales -> may be a good assumption
- ISM exists in pressure equilibrium
 - Observationally constrained

Thermal Instability

- Thermal equilibrium curve
- Net cooling above
- Net heating below
- Local shape of EQ curve determines stability
- Thermally unstable gas develops into a bi-stable medium

Magneto-Rotational Instability

- Requirements to have MRI
 - Differentially rotating (shearing) system
 - Angular velocity must decrease outward
 - Weak magnetic fields (not too strong)
- Physical basis
 - Fluid elements are displaced outward
 - Magnetic fields resist shear
 - Velocity at new location is now too large to maintain equilibrium
- These are some of the first ISM simulations of MRI in a bi-stable medium

ISM Simulations

- ZEUS-2D
 - Time explicit, finite difference, staggered mesh
 - Artificial viscosity for shocks, CT for magnetic field
- Local 2D Simulations
 - 100 pc Box, 512² Zones
- Shearing periodic boundary conditions
- Subroutines for cooling and conduction
- Initial conditions

TI + MRI Simulations

- 3D simulations soon to follow as 2D channel solution gives way to fully developed
- turbulence
- Include additional physical effects
 - Supernova & stellar winds from massive stars
 - Self gravity needed to form GMCs